(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__f(a, b, X) → a__f(X, X, mark(X))
a__c → a
a__c → b
mark(f(X1, X2, X3)) → a__f(X1, X2, mark(X3))
mark(c) → a__c
mark(a) → a
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__c → c
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
mark(f(a, b, X3)) →+ a__f(mark(X3), mark(X3), mark(mark(X3)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X3 / f(a, b, X3)].
The result substitution is [ ].
The rewrite sequence
mark(f(a, b, X3)) →+ a__f(mark(X3), mark(X3), mark(mark(X3)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [X3 / f(a, b, X3)].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__f(a, b, X) → a__f(X, X, mark(X))
a__c → a
a__c → b
mark(f(X1, X2, X3)) → a__f(X1, X2, mark(X3))
mark(c) → a__c
mark(a) → a
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__c → c
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
a__f(a, b, X) → a__f(X, X, mark(X))
a__c → a
a__c → b
mark(f(X1, X2, X3)) → a__f(X1, X2, mark(X3))
mark(c) → a__c
mark(a) → a
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__c → c
Types:
a__f :: a:b:f:c → a:b:f:c → a:b:f:c → a:b:f:c
a :: a:b:f:c
b :: a:b:f:c
mark :: a:b:f:c → a:b:f:c
a__c :: a:b:f:c
f :: a:b:f:c → a:b:f:c → a:b:f:c → a:b:f:c
c :: a:b:f:c
hole_a:b:f:c1_0 :: a:b:f:c
gen_a:b:f:c2_0 :: Nat → a:b:f:c
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
a__f,
markThey will be analysed ascendingly in the following order:
a__f = mark
(8) Obligation:
TRS:
Rules:
a__f(
a,
b,
X) →
a__f(
X,
X,
mark(
X))
a__c →
aa__c →
bmark(
f(
X1,
X2,
X3)) →
a__f(
X1,
X2,
mark(
X3))
mark(
c) →
a__cmark(
a) →
amark(
b) →
ba__f(
X1,
X2,
X3) →
f(
X1,
X2,
X3)
a__c →
cTypes:
a__f :: a:b:f:c → a:b:f:c → a:b:f:c → a:b:f:c
a :: a:b:f:c
b :: a:b:f:c
mark :: a:b:f:c → a:b:f:c
a__c :: a:b:f:c
f :: a:b:f:c → a:b:f:c → a:b:f:c → a:b:f:c
c :: a:b:f:c
hole_a:b:f:c1_0 :: a:b:f:c
gen_a:b:f:c2_0 :: Nat → a:b:f:c
Generator Equations:
gen_a:b:f:c2_0(0) ⇔ a
gen_a:b:f:c2_0(+(x, 1)) ⇔ f(a, a, gen_a:b:f:c2_0(x))
The following defined symbols remain to be analysed:
mark, a__f
They will be analysed ascendingly in the following order:
a__f = mark
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mark(
gen_a:b:f:c2_0(
n4_0)) →
gen_a:b:f:c2_0(
n4_0), rt ∈ Ω(1 + n4
0)
Induction Base:
mark(gen_a:b:f:c2_0(0)) →RΩ(1)
a
Induction Step:
mark(gen_a:b:f:c2_0(+(n4_0, 1))) →RΩ(1)
a__f(a, a, mark(gen_a:b:f:c2_0(n4_0))) →IH
a__f(a, a, gen_a:b:f:c2_0(c5_0)) →RΩ(1)
f(a, a, gen_a:b:f:c2_0(n4_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
a__f(
a,
b,
X) →
a__f(
X,
X,
mark(
X))
a__c →
aa__c →
bmark(
f(
X1,
X2,
X3)) →
a__f(
X1,
X2,
mark(
X3))
mark(
c) →
a__cmark(
a) →
amark(
b) →
ba__f(
X1,
X2,
X3) →
f(
X1,
X2,
X3)
a__c →
cTypes:
a__f :: a:b:f:c → a:b:f:c → a:b:f:c → a:b:f:c
a :: a:b:f:c
b :: a:b:f:c
mark :: a:b:f:c → a:b:f:c
a__c :: a:b:f:c
f :: a:b:f:c → a:b:f:c → a:b:f:c → a:b:f:c
c :: a:b:f:c
hole_a:b:f:c1_0 :: a:b:f:c
gen_a:b:f:c2_0 :: Nat → a:b:f:c
Lemmas:
mark(gen_a:b:f:c2_0(n4_0)) → gen_a:b:f:c2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_a:b:f:c2_0(0) ⇔ a
gen_a:b:f:c2_0(+(x, 1)) ⇔ f(a, a, gen_a:b:f:c2_0(x))
The following defined symbols remain to be analysed:
a__f
They will be analysed ascendingly in the following order:
a__f = mark
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__f.
(13) Obligation:
TRS:
Rules:
a__f(
a,
b,
X) →
a__f(
X,
X,
mark(
X))
a__c →
aa__c →
bmark(
f(
X1,
X2,
X3)) →
a__f(
X1,
X2,
mark(
X3))
mark(
c) →
a__cmark(
a) →
amark(
b) →
ba__f(
X1,
X2,
X3) →
f(
X1,
X2,
X3)
a__c →
cTypes:
a__f :: a:b:f:c → a:b:f:c → a:b:f:c → a:b:f:c
a :: a:b:f:c
b :: a:b:f:c
mark :: a:b:f:c → a:b:f:c
a__c :: a:b:f:c
f :: a:b:f:c → a:b:f:c → a:b:f:c → a:b:f:c
c :: a:b:f:c
hole_a:b:f:c1_0 :: a:b:f:c
gen_a:b:f:c2_0 :: Nat → a:b:f:c
Lemmas:
mark(gen_a:b:f:c2_0(n4_0)) → gen_a:b:f:c2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_a:b:f:c2_0(0) ⇔ a
gen_a:b:f:c2_0(+(x, 1)) ⇔ f(a, a, gen_a:b:f:c2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_a:b:f:c2_0(n4_0)) → gen_a:b:f:c2_0(n4_0), rt ∈ Ω(1 + n40)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
a__f(
a,
b,
X) →
a__f(
X,
X,
mark(
X))
a__c →
aa__c →
bmark(
f(
X1,
X2,
X3)) →
a__f(
X1,
X2,
mark(
X3))
mark(
c) →
a__cmark(
a) →
amark(
b) →
ba__f(
X1,
X2,
X3) →
f(
X1,
X2,
X3)
a__c →
cTypes:
a__f :: a:b:f:c → a:b:f:c → a:b:f:c → a:b:f:c
a :: a:b:f:c
b :: a:b:f:c
mark :: a:b:f:c → a:b:f:c
a__c :: a:b:f:c
f :: a:b:f:c → a:b:f:c → a:b:f:c → a:b:f:c
c :: a:b:f:c
hole_a:b:f:c1_0 :: a:b:f:c
gen_a:b:f:c2_0 :: Nat → a:b:f:c
Lemmas:
mark(gen_a:b:f:c2_0(n4_0)) → gen_a:b:f:c2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_a:b:f:c2_0(0) ⇔ a
gen_a:b:f:c2_0(+(x, 1)) ⇔ f(a, a, gen_a:b:f:c2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_a:b:f:c2_0(n4_0)) → gen_a:b:f:c2_0(n4_0), rt ∈ Ω(1 + n40)
(18) BOUNDS(n^1, INF)